

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # 0.6.4

Internal improvements

	Decrease time it takes to load the Tokenizer by ~ 40% (#70).

	Tag lookup is backed by a vector instead of a hashmap now.

Breaking changes

	The tagger now returns iterators over tags instead of allocating a vector.

	Remove get_group_members function.

0.6.3

Fixes

	Fix a bug where calling Rule::suggest in parallel across threads would cause a panic (#68, thanks @drahnr!)

0.6.2

Internal improvements

Speed up loading the Tokenizer by ~ 25% (#66).

0.6.1

Fixes

	Build Python wheels in container for full manylinux2014 compliance, now works for glibc 2.17 and above (thanks @dvwright!)

	Speed up loading the Tokenizer by avoiding an allocation (thanks @drahnr!)

0.6.0

Fixes

	Fix a significant bug where text with multiple sentences would sometimes cause an error if one of the latter sentences matches some pattern (#61, #63, thanks @drahnr!).

Breaking changes

	Remove multiword_tags on tokens (now part of the regular tags).

	Make fields of the Word private and add getter methods.

	Word constructor is now called new instead of new_with_tags.

New features

	Adds as_str convenience method to multiple structs (WordId, PosId, Word).

0.5.3

	Restore FromIterator and IntoIterator impl on Rules (#58, thanks @drahnr!)

	Add Clone derives on Tokenizer and Rules (and, accordingly, on their fields)

0.5.1

Breaking changes

	Changes the focus from Vec<Token> to Sentence (#54). pipe and sentencize return iterators over Sentence / IncompleteSentence now.

	Removes the special SENT_START token (now only used internally). Each token corresponds to at least one character in the input text now.

	Makes the fields of Token and IncompleteToken private and adds getter methods (#54).

	char_span and byte_span are replaced by a Span struct which keeps track of char and byte indices at the same time (#54). To e.g. get the byte range, use token.span().byte().

	Spans are relative to the input text now, not anymore to sentence boundaries (#53, thanks @drahnr!).

New features

	The regex backend can now be chosen from Oniguruma or fancy-regex with the features regex-onig and regex-fancy. regex-onig is the default.

	nlprule now compiles to WebAssembly. WebAssembly support is guaranteed for future versions and tested in CI.

	A new selector API to select individual rules (details documented in nlprule::rule::id). For example:


```rust
use nlprule::{Tokenizer, Rules, rule::id::Category};
use std::convert::TryInto;

let mut rules = Rules::new(“path/to/en_rules.bin”)?;

// disable rules named “confusion_due_do” in category “confused_words”
rules



	.select_mut(
	
	&Category::new(“confused_words”)
	.join(“confusion_due_do”)
.into(),









)
.for_each(|rule| rule.disable());




// disable all grammar rules
rules


.select_mut(&Category::new(“grammar”).into())
.for_each(|rule| rule.disable());




// a string syntax where slashes are the separator is also supported
rules


.select_mut(&”confused_words/confusion_due_do”.try_into()?)
.for_each(|rule| rule.enable());




```

0.4.6

Breaking changes

	.validate() in nlprule-build now returns a Result<()> to encourage calling it after .postprocess().

Fixes

	Fixes an error where Cursor position in nlprule-build was not reset appropriately.

	Use fs_err everywhere for better error messages.

0.4.5

New features
- A transform function in nlprule-build to transform binaries immediately after acquiring them. Suited for e. g. compressing the binaries before caching them.

Fixes
- Require srx=^0.1.2 to include a patch for out of bounds access.

0.4.4

Breaking changes

This is a patch release but there are some small breaking changes to the public API:
- from_reader and new methods of the Tokenizer and Rules now return an nlprule::Error instead of bincode:Error.
- tag_store and word_store methods of the Tagger are now private.

New features

	The nlprule-build crate now has a postprocess method to allow e.g. compression of the produced binaries (#32, thanks @drahnr!).

Internal improvements

	Newtypes for PosIdInt and WordIdInt to clarify use of ids in the tagger (#31).

	Newtype for indices into the match graph (GraphId). All graph ids are validated at build-time now (also fixed an error where invalid graph ids in the XML files were ignored through this) (#31).

	Reduced size of the English tokenizer through better serialization of the chunker. From 15MB (7.7MB gzipped) to 11MB (6.9MB gzipped).

	Reduce allocations through making more use of iterators internally (#30). Improves speed but there is no significant benchmark improvement on my machine.

	Improve error handling by propagating more errors in the compile module instead of panicking and better build-time validation. Reduces `unwrap`s from ~80 to ~40.

0.4.3

Breaking changes

	nlprule does sentence segmentation internally now using [srx](https://github.com/bminixhofer/srx). The Python API has changed, removing the SplitOn class and the *_sentence methods:


```python
tokenizer = Tokenizer.load(“en”)
rules = Rules.load(“en”, tokenizer)

rules.correct(“He wants that you send him an email.”) # this takes an arbitrary text
```


	new_from is now called from_reader in the Rust API (thanks @drahnr!)

	Token.text and IncompleteToken.text are now called Token.sentence / IncompleteToken.sentence to avoid confusion with Token.word.text.

	Tokenizer.tokenize is now private. Use Tokenizer.pipe instead (also does sentence segmentation).

New features
- Support for Spanish (experimental).
- A new multiword tagger improves tagging of e. g. named entities for English and Spanish.
- Adds the nlprule-build crate which makes using the correct binaries in Rust easier (thanks @drahnr for the suggestion and discussion!)
- Scripts and docs in build/README.md to make creating the nlprule build directories easier and more reproducible.
- Full support for LanguageTool unifications.
- Binary size of the Tokenizer improved a lot. Now roughly x6 smaller for German and x2 smaller for English.
- New iterator helpers for Rules (thanks @drahnr!)
- A method .sentencize on the Tokenizer which does only sentence segmentation and nothing else.

0.3.0

__BREAKING: suggestion.text is now more accurately called `suggestion.replacements`__

	Lots of speed improvements: NLPRule is now roughly 2.5x to 5x faster for German and English, respectively.

	Rules have more information in the public API now: See #5

0.2.2

	Python 3.9 support (fixes #7)

0.2.1

	Fix precedence of Rule IDs over Rule Group IDs.

0.2.0

	Updated to LT version 5.2.

	Suggestions now have a message and source attribute (#5):


```python
suggestions = rules.suggest_sentence(“She was not been here since Monday.”)
for s in suggestions:


print(s.start, s.end, s.text, s.source, s.message)




# prints:
# 4 16 [‘was not’, ‘has not been’] WAS_BEEN.1 Did you mean was not or has not been?
```


	NLPRule is parallelized by default now. Parallelism can be turned off by setting the NLPRULE_PARALLELISM environment variable to false.

 # Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or

advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic

address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a

professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at bminixhofer@gmail.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

[homepage]: https://www.contributor-covenant.org

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

	<h1 align=’center’>
	nlprule

</h1>

	<p align=’center’>
	
	
	

</p>

A fast, low-resource Natural Language Processing and Error Correction library written in Rust. nlprule implements a rule- and lookup-based approach to NLP using resources from [LanguageTool](github.com/languagetool-org/languagetool).

	<details>
	<summary>Python Usage</summary>

Install: pip install nlprule

Use:
```python
from nlprule import Tokenizer, Rules

tokenizer = Tokenizer.load(“en”)
rules = Rules.load(“en”, tokenizer)
```
```python
rules.correct(“He wants that you send him an email.”)
# returns: ‘He wants you to send him an email.’

rules.correct(“I can due his homework.”)
# returns: ‘I can do his homework.’


	for s in rules.suggest(“She was not been here since Monday.”):
	print(s.start, s.end, s.replacements, s.source, s.message)





# prints:
# 4 16 [‘was not’, ‘has not been’] WAS_BEEN.1 Did you mean was not or has not been?
```
```python
for sentence in tokenizer.pipe(“A brief example is shown.”):



	for token in sentence:
	
	print(
	repr(token.text).ljust(10),
repr(token.span).ljust(10),
repr(token.tags).ljust(24),
repr(token.lemmas).ljust(24),
repr(token.chunks).ljust(24),





)








# prints:
# ‘A’        (0, 1)     [‘DT’]                   [‘A’, ‘a’]               [‘B-NP-singular’]
# ‘brief’    (2, 7)     [‘JJ’]                   [‘brief’]                [‘I-NP-singular’]
# ‘example’  (8, 15)    [‘NN:UN’]                [‘example’]              [‘E-NP-singular’]
# ‘is’       (16, 18)   [‘VBZ’]                  [‘be’, ‘is’]             [‘B-VP’]
# ‘shown’    (19, 24)   [‘VBN’]                  [‘show’, ‘shown’]        [‘I-VP’]
# ‘.’        (24, 25)   [‘.’, ‘PCT’, ‘SENT_END’] [‘.’]                    [‘O’]
```
</details>

	<details>
	<summary>Rust Usage</summary>

Recommended setup:

Cargo.toml
```toml
[dependencies]
nlprule = “<version>”

[build-dependencies]
nlprule-build = “<version>” # must be the same as the nlprule version!
```

build.rs
```rust
fn main() {


println!(“cargo:rerun-if-changed=build.rs”);


	nlprule_build::BinaryBuilder::new(
	&[“en”],
std::env::var(“OUT_DIR”).expect(“OUT_DIR is set when build.rs is running”),





)
.build()
.validate();





}

src/main.rs
```rust
use nlprule::{Rules, Tokenizer, tokenizer_filename, rules_filename};

	fn main() {
	
	let mut tokenizer_bytes: &’static [u8] = include_bytes!(concat!(
	env!(“OUT_DIR”),
“/”,
tokenizer_filename!(“en”)

));
let mut rules_bytes: &’static [u8] = include_bytes!(concat!(

env!(“OUT_DIR”),
“/”,
rules_filename!(“en”)

));

let tokenizer = Tokenizer::from_reader(&mut tokenizer_bytes).expect(“tokenizer binary is valid”);
let rules = Rules::from_reader(&mut rules_bytes).expect(“rules binary is valid”);

	assert_eq!(
	rules.correct(“She was not been here since Monday.”, &tokenizer),
String::from(“She was not here since Monday.”)

);

}

nlprule and nlprule-build versions are kept in sync.

</details>

Main features

	Rule-based Grammatical Error Correction through multiple thousand rules.

	A text processing pipeline doing sentence segmentation, part-of-speech tagging, lemmatization, chunking and disambiguation.

	Support for English, German and Spanish.

	Spellchecking. (in progress)

Goals

	A single place to apply spellchecking and grammatical error correction for a downstream task.

	
	Fast, low-resource NLP suited for running:
	
	as a pre- / postprocessing step for more sophisticated (i. e. ML) approaches.

	in the background of another application with low overhead.

	client-side in the browser via WebAssembly.

	100% Rust code and dependencies.

Comparison to LanguageTool

| |Disambiguation rules| | |Grammar rules| | LT version | nlprule time | LanguageTool time |

——- | ——————————————— | —————– | ———- | ———— | —————– |

English | 843 (100%) | 3725 (~ 85%) | 5.2 | 1 | 1.7 - 2.0 |

German | 486 (100%) | 2970 (~ 90%) | 5.2 | 1 | 2.4 - 2.8 |

Spanish | Experimental support. Not fully tested yet. |

See the [benchmark issue](https://github.com/bminixhofer/nlprule/issues/6) for details.

Projects using nlprule

	[prosemd](https://github.com/kitten/prosemd-lsp): a proofreading and linting language server for markdown files with VSCode integration.

	[cargo-spellcheck](https://github.com/drahnr/cargo-spellcheck): a tool to check all your Rust documentation for spelling and grammar mistakes.

Please submit a PR to add your project!

Acknowledgements

All credit for the resources used in nlprule goes to [LanguageTool](https://github.com/languagetool-org/languagetool) who have made a Herculean effort to create high-quality resources for Grammatical Error Correction and broader NLP.

License

nlprule is licensed under the MIT license or Apache-2.0 license, at your option.

The nlprule binaries (*.bin) are derived from LanguageTool v5.2 and licensed under the LGPLv2.1 license. nlprule statically and dynamically links to these binaries. Under LGPLv2.1 §6(a) this does not have any implications on the license of nlprule itself.

 The nlprule binaries (*.bin) are derived from LanguageTool v5.2 and licensed under the LGPLv2.1 license. nlprule statically and dynamically links to these binaries. Under LGPLv2.1 §6(a) this does not have any implications on the license of nlprule itself.

The nlprule binaries are distributed via Github Releases. As required by LGPLv2.1 a copy of the license is available here: LICENSE.

 # nlprule-build

This crate provides a builder to make it easier to use the correct binaries for [nlprule](https://github.com/bminixhofer/nlprule). It also provides:
1. Utility functions to download the binaries from their distribution source.
2. Scripts to create the nlprule build directories.

Development

If you are using a development version of nlprule, the builder can build the binaries itself (instead of just fetching them):

```rust
let nlprule_builder = nlprule_build::BinaryBuilder::new(


&[“en”],
std::env::var(“OUT_DIR”).expect(“OUT_DIR is set when build.rs is running”),




)
// this specifies that the binaries should be built if they are not found
.fallback_to_build_dir(true)
.build()
.validate();
```

In that case, you should set

`toml
[profile.dev]
build-override = { opt-level = 2 }
`

in your Cargo.toml. Building can be slow otherwise.

The following has information how to acquire the nlpruile build directories and how to build and test the nlprule binaries. As a user you will typically not need to do this.

Building and testing the nlprule binaries

Building the nlprule binaries requires the build directory for the corresponding language. The latest build directories are stored on Backblaze B2. Download them from https://f000.backblazeb2.com/file/nlprule/en.zip (adjusting the two-letter language code accordingly for other languages).

See [Making the build directory](#making-the-build-directory) for information on how to create a
build directory yourself.

The binaries can then be built with the compile target e. g.:

```
RUST_LOG=INFO cargo run –all-features –bin compile – 


–build-dir data/en –tokenizer-out storage/en_tokenizer.bin –rules-out storage/en_rules.bin




```

This is expected to warn about errors in the Rules since not all grammar rules are supported but should not report any errors in the Tokenizer.

Tests are contained in the binaries. To test the tokenizer binary, run e. g.:

`
RUST_LOG=WARN cargo run --all-features --bin test_disambiguation -- --tokenizer storage/en_tokenizer.bin
`

To test the grammar rule binary, run e. g.:

`
RUST_LOG=WARN cargo run --all-features --bin test -- --tokenizer storage/en_tokenizer.bin --rules storage/en_rules.bin
`

Making the build directory

nlprule needs build files to build the rule and tokenizer binaries. These build files contain e. g. the XML files for grammar and disambiguation rules, a dictionary with words and their associated part-of-speech tags / lemmas and some data used for optimizations. Collectively, they form the build directory. Each language has a separate build directory.

The build directory for a language can be generated with make_build_dir.py. Run python make_build_dir.py –help (or take a look at the source code) for more information.

Below are the commands used to make the build directories for nlprule’s supported languages (of course, the paths need to be adjusted depending on your setup):

English

```bash
python build/make_build_dir.py 


–lt_dir=$LT_PATH –lang_code=en –tag_dict_path=$LT_PATH/org/languagetool/resource/en/english.dict –tag_info_path=$LT_PATH/org/languagetool/resource/en/english.info –chunker_token_model=$HOME/Downloads/nlprule/en-token.bin –chunker_pos_model=$HOME/Downloads/nlprule/en-pos-maxent.bin –chunker_chunk_model=$HOME/Downloads/nlprule/en-chunker.bin –out_dir=data/en




```

Chunker binaries can be downloaded from http://opennlp.sourceforge.net/models-1.5/.

German

```bash
python build/make_build_dir.py 


–lt_dir=$LT_PATH –lang_code=de –tag_dict_path=$HOME/Downloads/nlprule/german-pos-dict/src/main/resources/org/languagetool/resource/de/german.dict –tag_info_path=$HOME/Downloads/nlprule/german-pos-dict/src/main/resources/org/languagetool/resource/de/german.info –out_dir=data/de




```

The POS dict can be downloaded from https://github.com/languagetool-org/german-pos-dict.

Spanish

```bash
python build/make_build_dir.py 


–lt_dir=$LT_PATH –lang_code=es –tag_dict_path=$HOME/Downloads/nlprule/spanish-pos-dict/org/languagetool/resource/es/es-ES.dict –tag_info_path=$HOME/Downloads/nlprule/spanish-pos-dict/org/languagetool/resource/es/es-ES.info –out_dir=data/es




```

Note for Spanish: disambiguation.xml is currently manually postprocessed by removing an invalid <marker> in POS_N and changing one rule ([commit](https://github.com/languagetool-org/languagetool/commit/9a304428341f34e347fc4bef2a4c7c6f03bf1403)). grammar.xml is manually postprocessed by fixing the match reference for EN_TORNO. These issues will be fixed in the next LanguageTool release.

The POS dict can be downloaded from https://mvnrepository.com/artifact/org.softcatala/spanish-pos-dict (download the latest version and unzip the .jar).

 Example uses of nlprule.

Postprocessing for Natural Language Generation

nlprule can be used as postprocessing for e. g. GPT2. correct_nlg.py generates a fixed number of tokens with the first sentence of a wikipedia article as prompt and checks how many suggestions nlprule finds in the generated text. Sample output:

```
[…]

Before: …t out, as a condition of its being operated. Each lock keeper should ensure that all locks are operated and tha…
After: …t out, as a condition of its being operated. Each lockkeeper should ensure that all locks are operated and tha…
Message: This noun is normally spelled as one word.
Type: grammar
—

Before: …The Washington Post reported in October of 1963 that the Washington Post reported that “Mr. Saul …
After: …The Washington Post reported in October 1963 that the Washington Post reported that “Mr. Saul Gru…
Message: When specifying a month and year, ‘of’ is unnecessary: October 1963.
Type: misspelling
—

Before: …n saying that he had written a book on Napoleon’s life so he was born in 1906. The book, The Secret History…
After: …n saying that he had written a book on Napoleon’s life, so he was born in 1906. The book, The Secret Histor…
Message: Use a comma before ‘so’ if it connects two independent clauses (unless they are closely connected and short).
Type: typographical
—

[…]

Before: …The title track on this record has been included in the album…
After: …The title track on this record has been included on the album…
Message: The usual collocation for “album” is “on”, not “in” when “album” refers to a collection of recorded music. If by “album” you mean a collection of photos, “in an album” is correct. Did you mean on the album?
Type: grammar
—

Before: …he Z-machine version (in the standardised format) is comprised of 32 (in total) bytes, one per line. …
After: …he Z-machine version (in the standardised format) comprises 32 (in total) bytes, one per line. …
Message: Did you mean comprises or consists of or is composed of?
Type: misspelling
—

Before: …ith your friends and family when I went out for a weekend and it seemed like no other band coul…
After: …ith your friends and family when I went out for a weekend, and it seemed like no other band coul…
Message: Use a comma before ‘and’ if it connects two independent clauses (unless they are closely connected and short).
Type: typographical
—

Before: …esake, its unique appearance allows for increased damage and it does not require the use of an AOE spell. The …
After: …esake, its unique appearance allows for increased damage, and it does not require the use of an AOE spell. The…
Message: Use a comma before ‘and’ if it connects two independent clauses (unless they are closely connected and short).
Type: typographical
—

Before: …er came in September at the London Olympics . The runners up were the French and the Swedish. The women’s 3000…
After: …er came in September at the London Olympics . The runners-up were the French and the Swedish. The women’s 3000…
Message: The noun runners-up (= didn’t finish first place) is spelled with a hyphen.
Type: grammar
—

Generated 192300 tokens.
misspelling:    35 suggestions  (0.18 per 1000 tokens)
style:          53 suggestions  (0.28 per 1000 tokens)
typographical:  112 suggestions (0.58 per 1000 tokens)
grammar:        29 suggestions  (0.15 per 1000 tokens)
none:           3 suggestions   (0.02 per 1000 tokens)
inconsistency:  2 suggestions   (0.01 per 1000 tokens)
```

Which shows that nlprule finds a significant amount of suggestions for current NLG models! Note that not all of these are errors, some are just suggestions for improvement.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

